Convergence of a proximal point algorithm for maximal monotone operators in Hilbert spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of a proximal point algorithm for maximal monotone operators in Hilbert spaces

* Correspondence: hbshigh@yeah. net College of Science, Hebei University of Engineering, Handan 056038, China Full list of author information is available at the end of the article Abstract In this article, we consider the proximal point algorithm for the problem of approximating zeros of maximal monotone mappings. Strong convergence theorems for zero points of maximal monotone mappings are est...

متن کامل

Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces

In this paper, we introduce two kinds of iterative algorithms for finding zeroes of maximal monotone operators, and establish strong and weak convergence theorems of the modified proximal point algorithms. By virtue of the established theorems, we consider the problem of finding a minimizer of a convex function. Mathematics Subject Classification: Primary 47H17; Secondary 47H05, 47H10

متن کامل

A Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators

In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...

متن کامل

Approximate Proximal Point Algorithms for Finding Zeroes of Maximal Monotone Operators in Hilbert Spaces

LetH be a real Hilbert space, Ω a nonempty closed convex subset ofH, and T : Ω → 2 a maximal monotone operator with T−10/ ∅. Let PΩ be the metric projection of H onto Ω. Suppose that, for any given xn ∈ H, βn > 0, and en ∈ H, there exists xn ∈ Ω satisfying the following set-valued mapping equation: xn en ∈ xn βnT xn for all n ≥ 0, where {βn} ⊂ 0, ∞ with βn → ∞ as n → ∞ and {en} is regarded as a...

متن کامل

An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces

We introduce an iterative scheme for finding a common element of the solution set of a maximal monotone operator and the solution set of the variational inequality problem for an inverse strongly-monotone operator in a uniformly smooth and uniformly convex Banach space, and then we prove weak and strong convergence theorems by using the notion of generalized projection. The result presented in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2012

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2012-137